

XY3501 硬件规格书

V1.2

2016年 07月 11日

概述

本核心板是以 MT6735 为平台,周围配件主要有 MT6328 电源模块、eMCP 存储模块、MT6625L 四合一无线模块、MT6158 和 MT6169 射频模块等。通过对核心板 XY3501 的介绍,用以指导用户基于该核心板进行硬件设计,并在基础上更方便快捷的进行各种底板产品的设计。

阅读对象

本文档主要适用于以下工程师:

系统设计工程师

硬件工程师

软件工程师

结构工程师

测试工程师

内容简介

本文档包含 2 章,内容如下

章节	内容
1 综述	介绍 XY3501 模块的基本技术规格、参考设计的相关标准。
2 模块管脚定义	介绍 XY3501 模块引脚名称和功能
3 模块功能介绍	介绍各个功能模块的设计指导

版本历史

日期	版本	修改记录
	4	
		7

第一章 综述

XY3501 是一款 4G LTE 六模通信模块,SMT 封装。其性能稳定,外形紧凑,性价比高,功能强大,拥有良好的可扩展性和设计灵活性,能适用于各种产品设计需求。产品主要定位在行业应用 4G LTE 智能核心板。

主要特性

■ 操作系统

Android 5.1 (64bit)

■ 处理器

Quad-core/Octa-core ARM Cortex-A53 1.3GHz/512KB unified L2 cache

■ 内存

8GB eMMC+8Gb LPDDR3(可选择 16GB+16Gb、32GB+16Gb)

■ 无线连接

WIFI: 支持 802.11 a/b/g/n

FM: FM 接收器 Bluetooth: BT 4.0

GPS: GPS/Beidou/Galileo/Glonass A-GPS 支持双星系统

■ 支持频段

TDD_LTE: Band38/39/40/41(2555~2655MHz)

FDD_LTE: Band3/1 WCDMA: Band1/8 TDSCDMA: Band34/39

GSM/GPRS/EDGE: Band3/8

GPRS/EDGE Class 12

CDMA2000 (EVDO) 800

■ 用户接口

显示屏: FHD 1080P(1920 * 1080)

触摸屏: 电容触摸屏 前置摄像头: 13MP 后置摄像头: 13MP

前后摄像头可以支持双录, 画中画功能

产品规格

- 主板设计方式:核心板+副板方式
- 供应电压范围: 3.6V~4.5V
- 尺寸: 40mm * 50mm *2.8mm
- 168pin SMT
- 支持 FOTA
- 操作温度(-20°~+70°, 防震, 防跌落)
- 4个天线(WIFI/BT 天线、GPS 天线、LTE 主集天线、分集天线)

扩展接口

- 1 路 SDIO2.0
- 1路 SPI
- 2 路 SIM 卡
- 4路UART
- 4 路硬件 I2C
- 音频: 2 路 MIC 输入/3 路输出
- USB 2.0 HS peripheral(OTG)
- 3*3 按键阵列
- 多个外中断

应用前景

- 手持终端系统
- 移动数据终端
- 工业控制
- 车载导航

第二章 模块管脚定义

2.1 模块尺寸

图 2-1

以下是我们的 XY3501 的实物图片

2.2 pin 脚分布

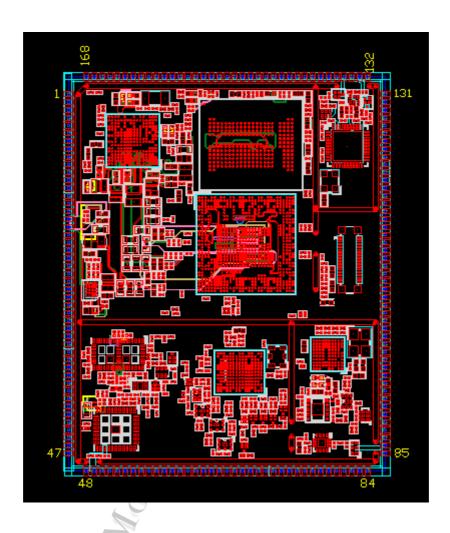


图 2-2

深圳市新移科技有限公司 第6页

2.2 核心板引脚描述

类型缩写表

缩写	描述	
Al	Alog input	
AO	Analog output	
AIO	Analog bi-dirction	
DI	Digital input	
DO	Digital output	
DIO	Digital bi-direction	
Р	Power	
G	Ground	

表 2-1

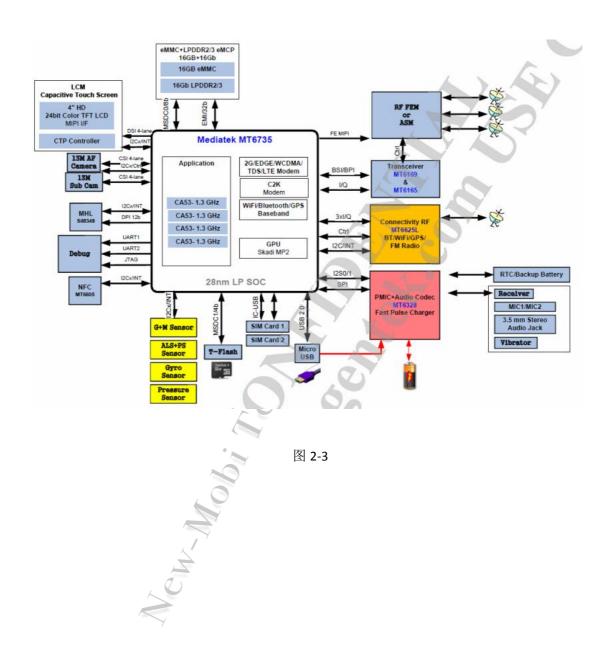
Pin NO	Pin name	Туре	Description	Power domain
1	GND	G	Ground	
2	MICBIAS1	Р	Microphone bias1	
3	AU_VIN1_N	AI	Microphone channel1 negative input	
4	AU_VIN1_P	ΑI	Microphone channel1 positive input	
5	GND	G	Ground	
6	AU_HPL	AO	Earphone L channel output	
7	AU_HPR	AO	Earphone R channel output	
8	GND	G	Ground	
9	AU_HSP	AO	Handset positive output	
10	AU_HSN	AO	Handset negative output	
11	GND	G	Ground	
12	AU_SPK1P	AO	Positive output of internal speaker amp	
13	AU_SPK1N	AO	negative output of internal speaker amp	
14	GND	G	Ground	
15	CS_N	Al	Fuel gauge ADC input	
16	CS_P	ΑI	Fuel gauge ADC input	
17	VBAT	Р	Battery	024 57
18	VBAT	Р	Battery	0~4.5V
19	GND	G	Ground	
20	TDP2	DO	DSI0 lane2 P	DVDD18_MIPITX

Pin NO	Pin name	Туре	Description	Power domain
21	TDN2	DO	DSI0 lane2 N	DVDD18_MIPITX
22	GND	G	Ground	
23	TDP1	DO	DSI0 lane1 P	DVDD18_MIPITX
24	TDN1	DO	DSI0 lane1 N	DVDD18_MIPITX
25	GND	G	Ground	
26	ТСР	DO	DSI0 CK lane P	DVDD18_MIPITX
27	TCN	DO	DSI0 CK lane N	DVDD18_MIPITX
28	GND	G	Ground	
29	TDN0	DO	DSI0 lane0 N	DVDD18_MIPITX
30	TDP0	DO	DSI0 lane1 P	DVDD18_MIPITX
31	GND	G	Ground	
32	TDN3	DO	DSI0 lane3 N	DVDD18_MIPITX
33	TDP3	DO	DSI0 lane3 P	DVDD18_MIPITX
34	GND	G	Ground	
35	LCM_RST	DIO	LCM Reset	DVDD18
36	DSI_TE	DIO	LCM TE	DVDD18
37	DISP_PWM0	DIO	LCM BL PWM output	DVDD18
38	VBUS	Р	Charger input	0 514
39	VBUS	Р	Charger input	0∼5V
40	GND	G	Ground	
41	USB_DM	DIO	USB port differential data line	AVDD33_USB
42	USB_DP	DIO	USB port differential data line	AVDD33_USB
43	GND	G ,	Ground	
44	ADC_IN2	Al	SIM1 Power	0~1.5V
45	GPIO127	DIO	GPIO127	DVDD18
46	GPIO122	DIO	GPIO122	DVDD18
47	GPIO120	DIO	GPIO120	DVDD18
48	GND	G	Ground	
49	MAIN_ANT	AIO	2G,3G,4G main Antenna	
50	GND	G	Ground	
51	GPIO123	DIO	GPIO123	DVDD18

Pin NO	Pin name	Туре	Description	Power domain
52	GPI0124	DIO	GPI0123	DVDD18
53	GPIO121	DIO	GPIO121	DVDD18
54	BPI_BUS16	DIO	GPIO98 或 BPI_BUS16	DVDD18
55	BPI_BUS14	DIO	GPIO96 或 BPI_BUS14	DVDD18
56	BPI_BUS12	DIO	GPIO94 或 BPI_BUS12	DVDD18
57	BPI_BUS9	DIO	GPIO91 或 BPI_BUS9	DVDD18
58	BPI_BUS15	DIO	GPIO97 或 BPI_BUS15	DVDD18
59	BPI_BUS17	DIO	GPIO99 或 BPI_BUS17	DVDD18
60	BPI_BUS13	DIO	GPIO95 或 BPI_BUS13	DVDD18
61	SRCLKENAI	DIO	26MHz co-clock enable input	DVDD18
62	KPCOL2	DIO	Keypad Column2	DVDD18
63	KPCOL0	DIO	Keypad Column0	DVDD18
64	KPROW1	G	Keypad Row1	DVDD18
65	KPROW2	DI	Keypad Row2	DVDD18
66	KPROW0	DI	Keypad Row0	DVDD18
67	KPCOL1	DIO	Keypad Column1	DVDD18
68	GND	DIO	GND	DVDD18
69	GPIO80	DIO	GPIO80	DVDD18
70	GPIO78	DI	GPIO78	DVDD18
71	GPIO79	G	GPIO79	DVDD18
72	EXT_26M	DIO	Output 26M	DVDD18
73	PCM_CLK	DIO	GPIO61 & PCM_CLK	DVDD18
74	PCM_TX	DO 🗸	GPIO64 & PCM_TX	DVDD18
75	PCM_RX	DIO	GPIO63 & PCM_RX	DVDD18
76	PCM_SYNC	DIO	GPIO62 & PCM_SYNC	DVDD18
77	EINT2	DIO	External interrupt2	DVDD18
78	EINT6	DIO	External interrupt 6	DVDD18
79	EINT5	DIO	External interrupt 5	DVDD18
80	EINT7	DIO	External interrupt 7	DVDD18
81	EINTO/USB_I D	DIO	USB ID or External interrupt 0	DVDD18
82	EINT1	DIO	External interrupt 1	DVDD18

Pin NO	Pin name	Туре	Description	Power domain
83	EINT4	DIO	External interrupt 4	DVDD18
84	EINT3	DIO	External interrupt 3	DVDD18
85	GND	G	Ground	
86	C2K_MAIN_ANT	AIO	DRX and CDMA Antenna	
87	GND	G	Ground	
88	SPI_CS	DIO	GPIO65 & SPI chip select	DVDD18
89	SPI_CK	DIO	GPIO66 &SPI clock	DVDD18
90	SPI_MI	DIO	GPIO67&SPI input	DVDD18
91	SPI_MO	DIO	GPIO68 &SPI output	DVDD18
92	GND	G	Ground	
93	UTXD0	DO	UARTO TX	DVDD18
94	URXD0	DI	UARTO RX	DVDD18
95	URXD1	DO	UART1 RX	DVDD18
96	UTXD1	DI	UART1 TX	DVDD18
97	UTXD2	DO	UART2 TX	DVDD18
98	URXD2	DI	UART2 RX	DVDD18
99	URXD3	DI	UART3 RX	DVDD18
100	UTXD3	DO	UART3 TX	DVDD18
101	GND	G	Ground	
102	SDA3	DIO	I2C3 Data	DVDD18
103	SCL3	DIO	I2C3 Clock	DVDD18
104	SDA1	DIO	I2C1 Data	DVDD18
105	SCL1	DIO	I2C1 Clock	DVDD18
106	GND	O	Ground	
107	RDN3_A	DIO	CSI1 lane3 N	DVDD18_MIPIRX
108	RDP3_A	DO	CSI1 lane3 P	DVDD18_MIPIRX
109	SDA2	DIO	I2C2 Data	DVDD18
110	SCL2	DO	I2C2 clock	DVDD18
111	SCL0	DO	I2C0 clock	DVDD18
112	SDA0	DIO	I2CO Data	DVDD18
113	RDN2_A	DIO	CSI1 lane2 N	DVDD18_MIPIRX

Pin NO	Pin name	Туре	Description	Power domain
114	RDP2_A	DO	CSI1 lane2 P	DVDD18_MIPIRX
115	GND	G	Ground	
116	CMPCLK	DO	Camera pclk	DVDD18
117	CMDAT1	DI	Camera data1	DVDD18
118	CMDAT0	DI	Camera data0	DVDD18
119	GND	G	Ground	
120	GPIO19_IRTX_OUT	DIO	GPIO19	DVDD18
121	GPIO20	DIO	GPIO20	DVDD18
122	GPIO21	DIO	GPIO21	DVDD18
123	GND	G	Ground	
124	MSDC1_CLK	DO	MSDC1 clock	DVDD28_MC2
125	MSDC1_CMD	DO	MSDC1 command	DVDD28_MC2
126	MSDC1_DAT3	DIO	MSDC1 data3	DVDD28_MC2
127	MSDC1_DAT1	DIO	MSDC1 data1	DVDD28_MC2
128	MSDC1_DAT0	DIO	MSDC1 data0	DVDD28_MC2
129	MSDC1_DAT2	DIO	MSDC1 data2	DVDD28_MC2
130	VMCH_PMU	Р	Power for T-Card	0~3.3V
131	GND	G	Ground	
132	GND	G	Ground	
133	WIFI_RF	AIO	WIFI Antenna	
134	GND	G	Ground	
135	GPS_RF	AIO	GPS Antenna	
136	GND	G	Ground	
137	VIO28_PMU	Р	2.8V power for IO interface	DVDD28
138	VIO18_PMU	Р	1.8V power for IO interface	DVDD18
139	GND	G	Ground	
140	SIM1_SRST	DO	SIM1 reset	VSIM1_PMU
141	SIM1_SCLK	DO	SIM1 clock	VSIM1_PMU
142	SIM1_SIO	DIO	SIM1 data	VSIM1_PMU
143	VSIM1_PMU	Р	SIM1 Power	0~3.1V
144	GND	G	Ground	
145	SIM2_SCLK	DO	SIM2 clock	VSIM2_PMU



Pin NO	Pin name	Туре	Description	Power domain
146	SIM2_SRST	DO	SIM2 reset	VSIM2_PMU
147	SIM2_SIO	DIO	SIM2 data	VSIM2_PMU
148	VSIM2_PMU	Р	SIM2 Power	0~3.1V
149	PWRKEY	DI	Power key	0∼4.5V
150	SYSRSTB	DI	System reset	DVDD18
151	HOMEKEY	DI	Home key	DVDD18
152	VGP1_PMU	Р		2.8V
153	VIBR_PMU	Р	Power for vibrator	
154	VRTC	Р	Power for RTC	2.8V
155	ISINKO	AI	Current sink channel 0	
156	ISINK1	Al	Current sink channel 1	
157	GND	G	Ground	
158	MICBIAS0	Р	Microphone bias0	
159	AU_VINO_P	AI	Microphone channel0 negative input	
160	AU_VINO_N	Al	Microphone channel0 positive input	
161	AU_VIN2_N	Al	Microphone channel2 negative input	
162	AU_VIN2_P	Al	Microphone channel2 positive input	
163	GND	G	Ground	
164	FM_ANT	Al	Ve	
165	FM_RX_N_6625	Al		
166	GND	G	Ground	
167	EINT_EAR	DI	Earphone EINT	DVDD18
168	ACCDET	DI		DVDD18

表 2-2

2.3 系统框图

13

第三章、接口电路设计指导

3.1 电源

XY3501 供电可以支持有电池系统,供电范围可以在 3.4V~4.35V。涉及到的主要电源有: VBUS, VBAT, GND 这两个供电口。相关检测信号包括: CS_N, CS_P, BAT_SNS。

3.1.1 带电池系统

带电池系统的完整供电电路如图 3-1 所示,电池仅支持 4.2V 锂电池或者 4.35V 电池,系统对瞬间电流要求较高,因此要求电池整体回路内阻 80 毫欧以下,过流保护需要达到 4A 或更高。此时 VBUS 仅具有充电功能(充电电压 5V)。

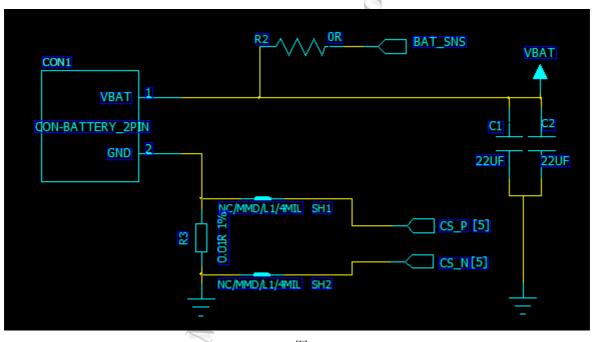


图 3-1

- 1, 电池选用 4.2V 或 4.35V
- 2, R3 选用至少 1206 以上封装,取值默认为 0.01R,允许有一定差异,如两个 0.01R 并联也可以,但不能误差过大。
- 3, VBAT 走线宽度大于 80mil。
- 4, CS P, CS N 差分走线包地保护
- 5, CS P, CS N 不要接反

3.1.2 不带电池系统

当系统直接采用外部电源供电时,供电电路请参照图 3-2,尽量减小供电系统的纹波,并保证拥有 3A 以上的稳定输出能力以及 4A 以上的瞬间供电能力。

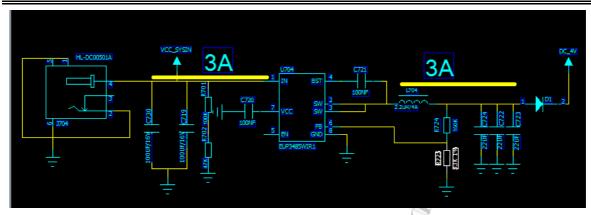


图 3-2

D1 这个二极管,一定要选用压差尽量小的,电流需要超过 3A。这个二极管在这边主要起到防止插入 USB 线后,电流倒灌的问题。

3.1.3 充电系统

当系统采用 USB 接口+DC-Jack 充电接口这种设计方案

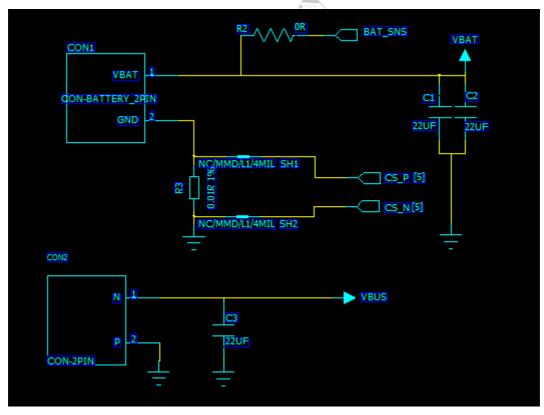


图 3-3

3.2 射频

系统共有 4 个射频 PIN,分别为 LTE 主集天线,LTE 分集天线,WIFI/BT 天线,GPS 天线

■ n LTE 主集天线包括的频段有:

GSM: 900, 1800,

WCDMA: Band1, Band8,

TD-SCDMA: band34, band39,

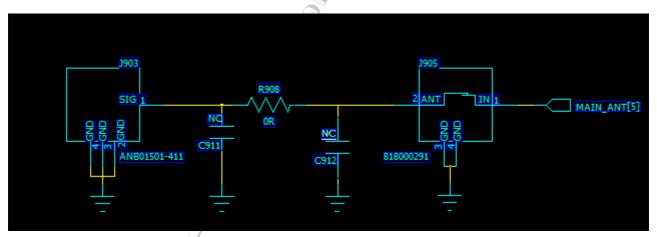
FDD-LTE: Band1, Band3

TDD-LTE: band38, Band40, Band41

■ 分集天线包含的频段有:

TDD-LTE: Band38, Band40, Band41

FDD-LTE: Band1, Band3


BC0

■ WIFI/BT 天线包括的频段有: WIFI/BT 2.4G WIFI 5G

■ GPS 天线包括的频段有:

GPS 1.5G

客户的底板,在靠近天线馈点的地方,都需要加一个几匹配电路如下图所示:

上面这个原理图,J903 是同轴线座子,也可以换成三个天线顶针的焊盘。J905 主要是做校准用的 RF座。 R908,C911,C912 够成一个工型匹配电路。靠近天线馈点放置。另外需要注意 RF线一定要走微带

50 欧的线。尽量别打过孔

3.3 音频

系统备有三个音频输入口,三个音频输出口;两个输入口分别为 AU_VINO_P,AU_VINO_N;AU_VIN2_P,AU_VIN0_N;AU_VIN1_N;三个输出口分别为 AU_HSP、AU_HSN;AU_SPK1P、AU_SPK1N;AU_HPL、AU_HPL;

n

■ MICO 通道主要用于主 MIC 的输入,使用驻极体 MIC 时其典型电路如图 3-3 所示。

图 3-3

- 1,输入电容尽量靠近核心板,MICBIASO偏压请注意保护,以免引入噪声;
- 2, 差分走线且包地保护, 以免引入噪声

使用模拟硅麦时其典型应用电路如图 3-4 所示

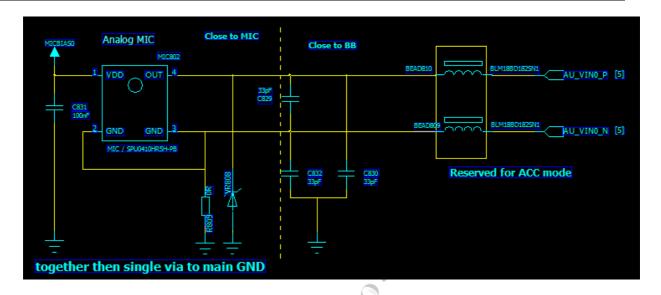
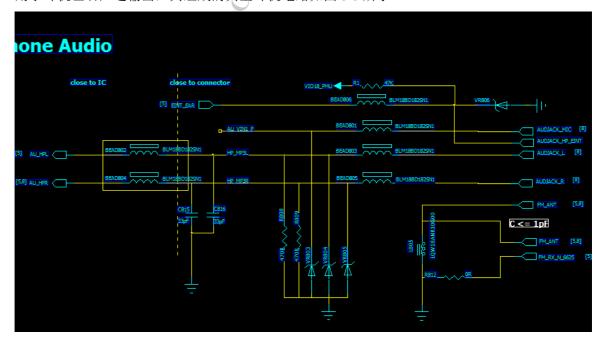



图 3-4

- 1, R809 使用 0 欧的电阻
- 2, B809 和 B810 使用 0402 封装, 方便更换磁珠
- 3,不要在通路中串隔直电容
- 4, 差分走线, 包地保护, 以免引入噪声
- MIC1 通路主要用于耳机 MIC 输入,采用的是单端输入方式,AU_HPL/ AU_HPL 通道主要用于耳机左右声道输出,其组成的典型耳机电路如图 3-5 所示

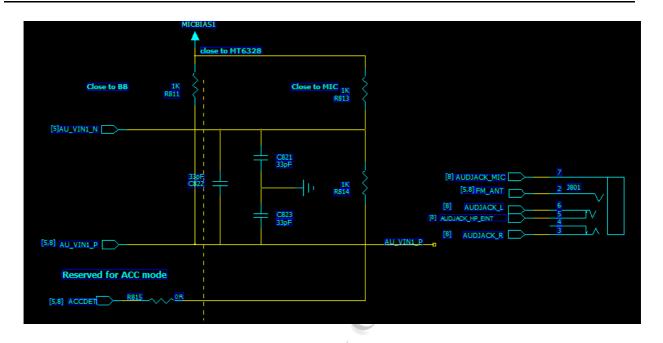


图 3-5

- 1, 耳机通路上不要随意串隔直电容;
- 2, BEAD802 和 BEAD802 为预留位置,靠近核心板;

n

■ AU_HSP/ AU_HSN 通道主要用于听筒输出,其典型应用电路如图 3-6 所示。

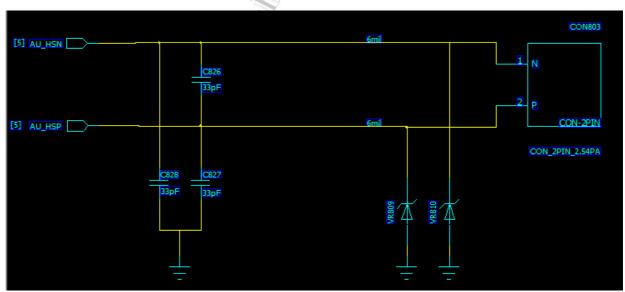


图 3-6

n

■ AU_SPK1P/ AU_SPK1N 主要用于喇叭的输出,其输出功率为 0.7W(电池电压 3.7V,负载 8 欧姆), 并可选择工作在 AB 类模式或者 D 类模式 (AB 类的输出功率略低),其典型应用电路如 图 3-7 所示。

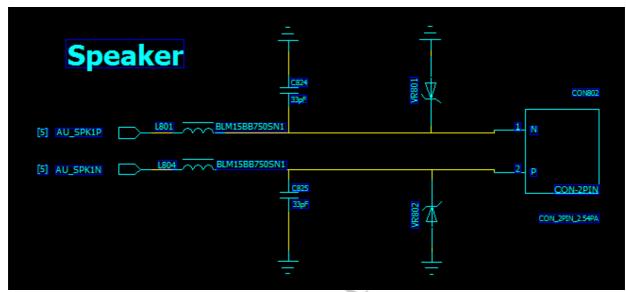


图 3-7

- 1, 走线宽度要足够
- 2, L801 和 L804 的磁珠请选用 0603 封装,过流能力要足够,并注意静态直流阻抗不宜太大,以免过多损耗功率导致喇叭声音太小
 - 3,如果认为喇叭输出功率不够,需要进一步放大,请参照图 3-8;

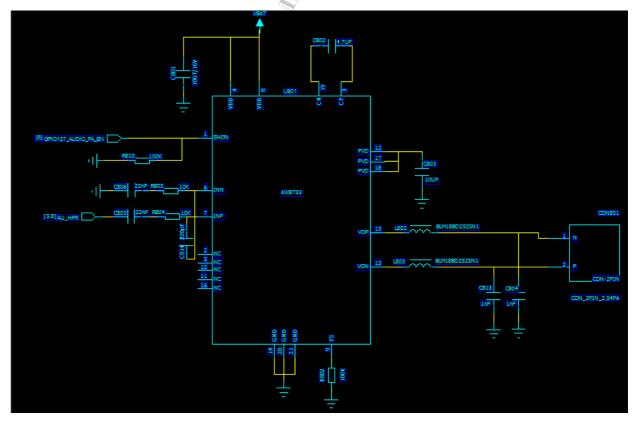


图 3-8

- 1, 音源选用耳机输出作为功放的输入, 使用内部功放的输出直接放大, 信噪比会比较低
- 2,输出端的磁珠,请使用 DCR 值较低的器件,以免喇叭功率损耗过大,影响喇叭声音大小,请使用 0603 封装的磁珠,保证过流能力

3.4 扩展口

3.4.1 T 卡

T卡的典型应用电路如图 3-9 所示

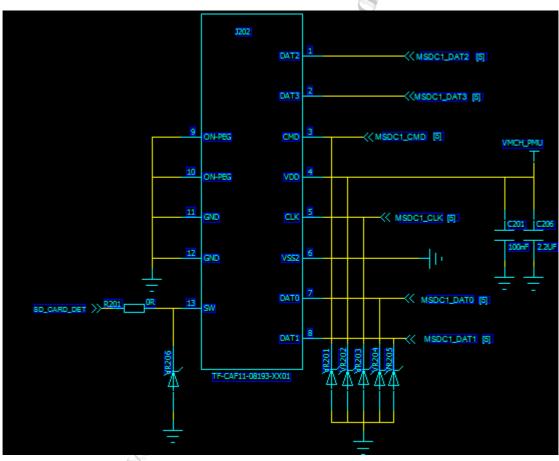


图 3-9

- 1, T卡请使用 MSDC1 接口,数据线不需要上拉电阻
- 2, T卡供电电源请使用 VMCH_PMU,并放置最少 4.7UF 电容
- 3,带有热插拔检测的 T 卡座在机械结构上,插入和拔出的状态只能是悬空和接地之间切换,不可出现和 VDD pin 短接的情况,

3.4.2 SIM 卡

系统可以支持双 SIM 卡,在两张同时插入时,只有一张支持 3G 和 4G,默认为 SIM 卡 1,典型应用电 路如图 3-10 所示

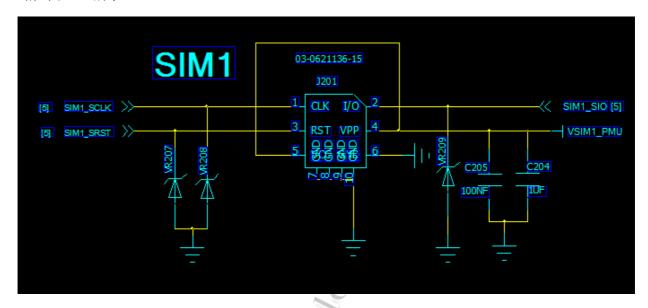


图 3-10

- 1, VSIM PMU 请放置 1uF 电容
- 2, 热插拔的中断口不可随意选择, SIM 卡 1 只能选择 EINT4, SIM 卡 2 只能选择 EINT5,
- 3, CLK 走线需要保护

3.4.3 USB 接口

USB 接口的典型应用电路如图 3-11 所示

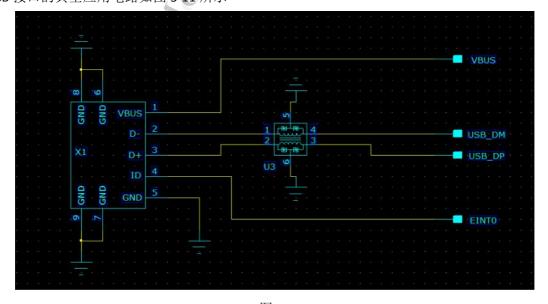


图 3-11

- 1, U3 为共模滤波器,如果没有过眼图等严格的要求,可以省略
- 2, DP, DM 请做 90 欧姆差分阻抗线
- 3, USB 供电请参看章节 3.1.3

3.4.4 键盘

系统具有 3*3 的阵列键盘,典型应用如图 3-12 所示,

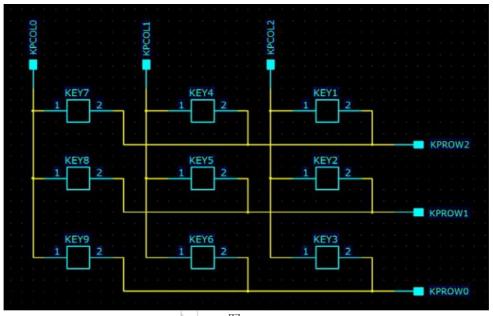


图 3-12

- 1, KPCOLO 有特殊功能,在上电时拉低可以强制进入下载模式,请注意;
- 2, 请根据系统设计情况自行做静电防护处理;

如果 3*3 按键不够,可以进行系统按键扩展,扩展按键示意图如图 3-13 所示,任意一个按键通过串一个 20K 电阻,可以并联一个按键,系统最大可以扩展为 18 个按键

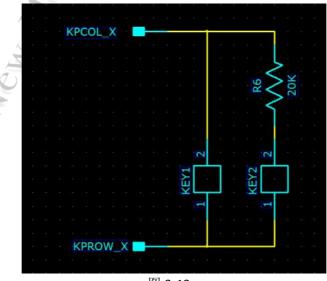


图 3-13

系统的三个特殊按键: 开机键, 硬复位键和 home 键, 其典型应用如图 3-14 所示

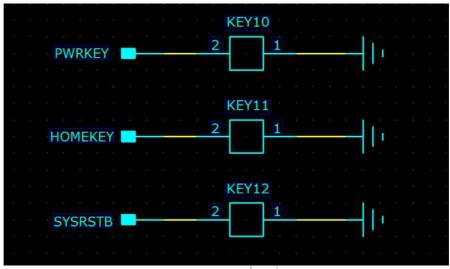


图 3-14

- 1,不要加任何上拉或下拉
- 2, 根据系统设计情况做好静电防护处理
- 3, 长按开机键也可以实现系统复位

3.4.5 中断

系统提供了很多个外中断接口,接口电平均为1.8V;

- 1, SIM1的热插拔中断必须使用 EINT4,
- 2, SIM2的热插拔中断必须使用 EINT5,
- 3, USB ID 必须使用 EINTO

除此之外的应用,中断可以任意分配,未用到的 EINT 接口也可以当作普通 GPIO 口使用

3.4.6 UART □

系统具有四路 UART 接口,均为 1.8V 接口电平,其中 UARTO 默认为系统 log 信息;未用到的 UART 口可以作为 GPIO 或中断使用;

3.4.7 I2C 接口

智能机系统不支持 GPIO 模拟 I2C 接口,因此系统 I2C 接口均为硬件 I2C 接口,核心板已经内置了上拉电阻,因此用户不需要再外加上拉电阻,接口电平均为 1.8V;注意每个 I2C 的设备挂载量不宜过多,通常情况下不要超过 5 个设备

3.4.8 SPI 接口

系统提供了一个标准 4 线型 SPI 接口,接口电平为 1.8V,如果无 SPI 接口需求,该组接口可以当作普通 GPIO 口或中断使用

3.5 其他设计

3.5.1 电平转换

所有的 GPIO、中断、I2C、SPI、UART 等均只能支持 1.8V 的逻辑电平,在实际使用中,往往和外部 设备出现电平不匹配的情况,此时,需要大量的电平转换电路帮助系统实现电平匹配

■ PIO 输出

此种应用相对简单,对数据传输速率基本没有要求,只完整简单的拉高拉低动作,通 常情况下我们不使用专用的 level-shift 芯片,而是采用如图 3-15 和图 3-16 所示的简单转换 电路,这两种形式的电路设计简单可靠,成本较低。

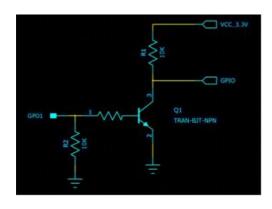


图 3-15 常高型

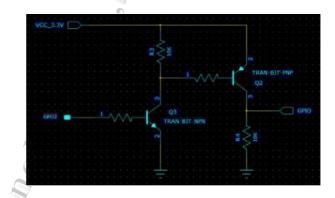


图 3-16 常低型

■ GPIO 输入或中断输入

简易设计如图 3-17 所示,

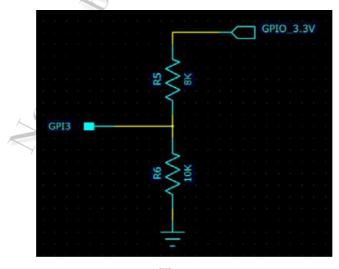


图 3-17

数字总线型接口的信号一般都要求有一定的带宽,以上两种简单的输入输出电路一般都 很难满足要求, 因此需要使用专用的电平转换芯片进行电平匹配

■ 双向 level-shift

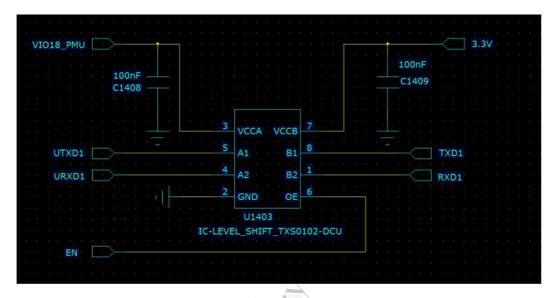


图 3-18

此种 level-shift 在构架上,判断输入端存在一定局限性,要求输出端是个常高状态,因此一般只在 UART 和 I2C 上应用;

■ 単向 level-shift

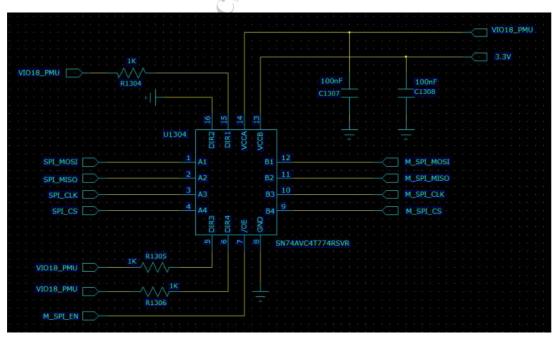
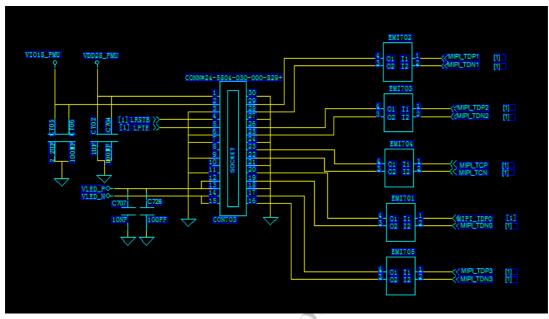
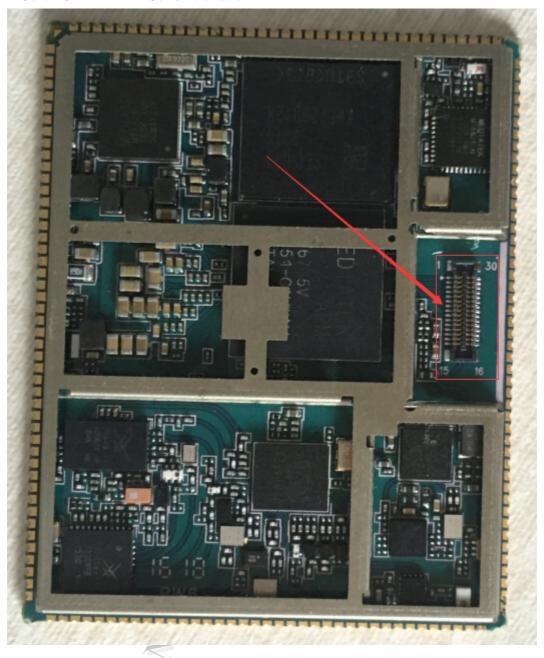


图 3-19


此种 level-shift 更加可靠,输入输出方向由外部逻辑控制,适合 SPI 等接口应用。

3.6 LCM 电路设计

我们的 XY3501 的核心板,只支持 MIPI 接口的 LCM


因为 LCM 的刷新时,数据量比较大。并且频率也比较高,因此我们在实际的产品中,为了防止 LCM 在工作时干拢 RF 的灵敏度。我们需要在靠近 LCM 连接器的地方加上 EMI 器件。具体如下图所


3.6 摄像头电路

我们的 XY3501 的核心板上有一个 BTB 的 30PIN 的连接器。可以支持普通的前后摄像头直接装上去使用。板上的 BTB 连接器如下图所示:

这个 30PIN 的连接器, 具体 PIN 定义, 如下图所示:

这个连接器上可以支持后摄像头 1300W, 前摄像头 500W。并且可以支持 PIP (画中画) 功能。

如果需要前摄像头也支持 1300W, 哪么需要用核心板上的邮票孔了。并且还要 FPC 将上图的连接器连到底板上去。具体可以参考我们的开发板的原理图。